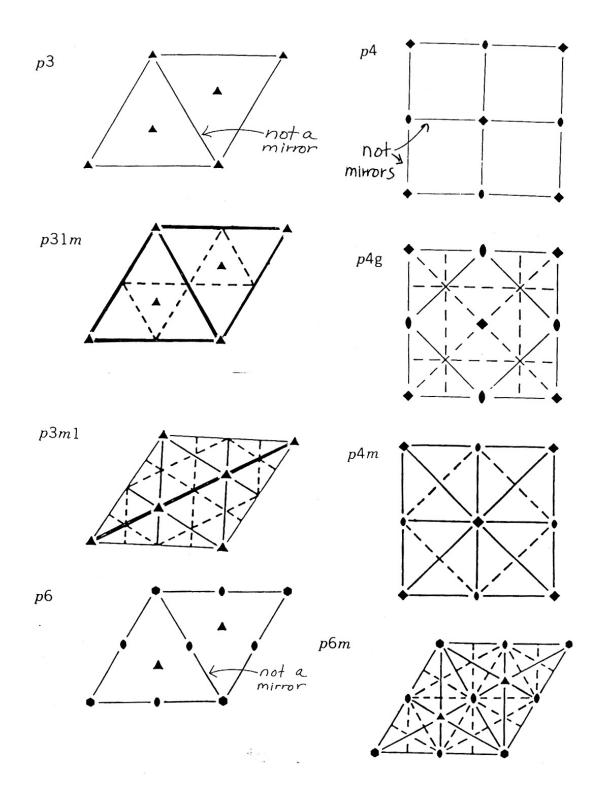
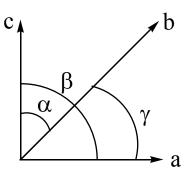


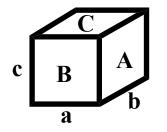
Figure 11.8. Diagrams showing all symmetry elements for the 17 two-dimensional symmetry classes; continuation on page 364. (Adapted from the International Tables for X-ray Crystallography, 1965.)



<u>3-D unit cell</u> (six parameters)

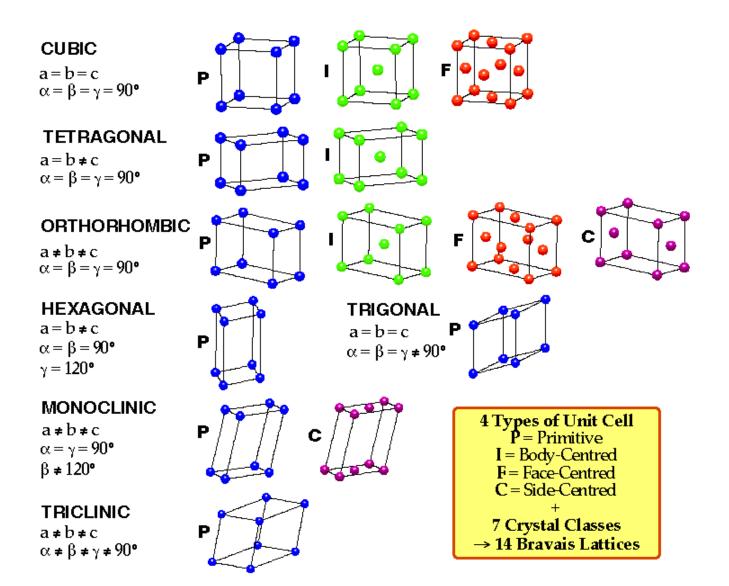


 α is the angle between b and c β is the angle between a and c γ is the angle between a and b



The faces of the unit cell are labeled as shown with A, B, C designations

As in the 2-D lattices, we can define unit cells with no symmetry on up to high symmetry



DEVELOPING THE 14 BRAVAIS LATTICES

ONE WILL ENCOUNTER BOTH MOLECULAR SYMMETRY SYMBOLS (SCHÖENFLIES) AND CRYSTALLOGRAPHIC SYMBOLS (HERMANN-MAUGIN)

Molecular point group symmetry (Schönflies) **TRICLINIC** Crystallographic point group C_i $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^\circ$ 3-D OBLIQUE LATTICE P No unique way to define vectors so one chooses the shortest vectors

THE ONLY SYMMETRY IS AN INVERSION CENTER

MONOCLINIC

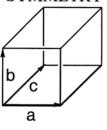
C_{2h} molecular symbol

2/m crystallographic symbol $a \neq b \neq c, \ \alpha = \gamma = 90$ $\beta \neq 90^{\circ}$

P, I, C (A,B)

ONE VECTOR ALONG b DIRECTION IS UNIQUE AND THE LATTICE HAS 2-FOLD ROTATIONAL SYMMETRY ABOUT THE "b" DIRECTION AND PLANES OF SYMMETRY

PERPENDICULAR TO IT TYPE I - PRIMITIVE CELL NOTE: COTTON'S BOOK USES ANOTHER CONVENTION USE THIS ONE



The Seven Crystal Systems highest

1. Triclinic

o Ria

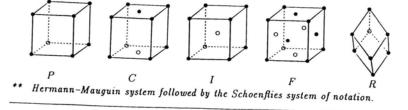
:	symmetry of lattice I	Cell constraints
Characteristic symmetry	Lattice	Azial and angular K constraints from
	symmetry	symmetry*
Identity or inversion	ī	$a \neq b \neq c$
(onefold rotation		$\alpha \neq \beta \neq \gamma$

		(onefold rotation or rolatory-inversion		$\alpha \neq \beta \neq \gamma$
		axis) in any direction		
2. Monoclinic	Monoclinic	A single 2-fold rotation	2/100	a≠b≠c
		or rotatory-inversion		$\alpha = \gamma = 90^{\circ},$
		exis along b		$\beta \neq 90^{\circ}$
3.	Orthorhombic	Three mutually	mmm	a≠b≠c
		perpendicular 2-fold		$\alpha = \beta = \gamma = 90^{\circ}$
		rotation or rotatory-inversion		= p = 1 = 30
		ares along a, b and c		
4.	4. Tetragonal	A single 4-fold	4/month	$a = b \neq c$
		rotation or rotatory-inversion	,	$\alpha = \beta = \gamma = 90^{\circ}$
		anis along c		2 - p = 1 = 30
5.	5. Cubic	Four 3-fold axes	m3m	a = b = c
		along a+b+c,		$\alpha = \beta = \gamma = 90^{\circ}$
		- а+b+ с, а-b+с, -а-b+с		α = <i>p</i> = <i>f</i> = 30
6	T _:			
0.	Irigonal	A single 3-fold	3m	a = b = c
		rotation or rotatory-inversion		$\alpha = \beta = \gamma \neq 90^{\circ}$
	Trigonal	azis along at btc		$\gamma < 120^{\circ}$
7. Hexagonal	Hexagonal	A single 6-fold	6/1101110100	$a = b \neq c$
		rotation or rotatory-inversion		$\alpha = \beta = 90^{\circ}$
		azis (along c)		$\gamma = 120^{\circ}$

These follow from the definition given in the characteristic symmetry column, rather than being the direct definition of the crystal system. Note that the symbol \neq means that values are not equal for symmetry reasons; they may, however, accidentally be equal.

	(r CRYS SYS		Brav	4) (3. rais Crystal fices Point Gnow	2) llogrophic sample space Group
ermann-	C1 (7)	rystal system)	Bravais Lattices (14)*	Crystallographic Point Groups (32) **	Common and/or representative space groups (out of 230)
angin \ ymbol	1. Tr	iclinic	Р	$\xrightarrow{1,\overline{1}}^{(C_1,C_i)}$	P1, PĪ
syme.	2. M	onoclinic	Ρ, C	2, m, 2/m (C ₂ , C ₅ , C _{2h})	P2 ₁ C2/c, P2 ₁ /c
chönflies nolecular	3. Or	thorhombic	P, C, I, F	222, mm2, mmm (D_2, C_{2v}, D_{2h})	P2 ₁ 2 ₁ 2 ₁ , Pbca I222, I2 ₁ 2 ₁ 2 ₁
Symbol	4. Te	lragonal	Р, І	$4, \overline{4}, 4/m, 422, 4mm, \overline{4}2m, 4/mmm$ $(C_4, S_4, C_{4h}, D_4, C_{4v}, D_{2d}, D_{2d}, D_{4h})$	P4, P4 ₁ , I 4 P4 ₁ 2 ₁ 2, I4 ₁ /amd
	5. Cu	bic	P, I, F	$23, m3, 432, \ \overline{43m}, m3m$ (T, T_h, O, T_d, O_h)	Fm3m, P23 Pa3, I2 ₁ 3
Same	So. Tri	gonal	R	$3, \overline{3}, 32, 3m, \overline{3}m$ $(C_3, C_{3i}, D_3, C_{3v}, D_{3d})$	P3, P3 ₁ 21, R3c
	(7. Hez	agonal	Р	$6, \overline{6}, 6/m, 622, 6mm, \overline{6}m2, 6/mmm (C_6, C_{3h}, C_{6h}, D_6 C_{6v}, D_{3h}, D_{6h})$	P61, P6222

* P = primitive, C = centered on the (001) faces, I = body-centered, F = all face-centered, R = primitive rhombohedral.



To fully understand the <u>crystallographic notation</u> used in this table, you need to examine <u>symmetry elements present</u> <u>in 3-D point groups</u>

*Biggest Difference (besides symbols being different sometimes) is that <u>improper rotation</u> axes are defined as a rotation followed by inversion or <u>rotoinversion</u> instead of rotation followed by reflection.

- 1. five <u>pure rotations</u> $2\pi/n$ where n =1, 2, 3, 4, and 6. Previously they were identified as C₁, C₂, C₃, C₄, C₆. They are now represented by 1, 2, 3, 4, and 6
- 2. five <u>rotoinversion</u> operations symbolized by $\overline{1}, \overline{2}, \overline{3}, \overline{4}$, and $\overline{6}$

remember $\overline{1} \equiv i$

<u>rotoinversions</u> are related to S_n , m, and i symbols (recall m=s, and i=S₂)

<u>1 operation:</u> No net rotation but inverts all the coordinates $(x, y, z) \longrightarrow (\overline{x}, \overline{y}, \overline{z})$ crystallographers equivalent of i

I. UNIT CELLS/LATTICE TYPES

(a) <u>7</u> DISTINCT CRYSTAL SYSTEMS

(b) 7 CRYSTAL SYSTEMS + CENTERING =

<u>14</u> DISTINCT BRAVAIS LATTICES

II. POINT GROUPS

32 CRYSTALLOGRAPHIC POINT GROUPS

DESCRIBE THE SYMMETRY OF a STATIONARY UNIT CELL (same as a molecule) FOR THIS WE NEED ONLY:

ROTATIONS, REFLECTIONS AND INVERSIONS

III. SPACE GROUPS

<u>14</u> DISTINCT BRAVAIS LATTICES + <u>32</u> CRYSTALLOGRAPHIC POINT GROUPS = <u>230</u> CRYSTALLOGRAPHIC SPACE GROUPS

DESCRIBE HOW MOLECULES ARE ARRANGED IN SPACE FOR THIS WE NEED:

TRANSLATIONAL SYMMETRY ELEMENTS (GLIDE PLANES, SCREW AXES)

ROTATIONS, REFLECTIONS AND INVERSIONS

WHAT ARE THE 32 CRYSTALLOGRAPHIC POINT GROUPS?

Same as the 32 molecular point groups. These are the total number of unique point groups that one can have by various combinations of rotations (restricted to C_1 , C_2 , C_3 , C_4 , and C_6), mirrors and an inversion center.

<u>32 CRYSTALLOGRAPHIC POINT GROUPS</u> (Hermann-Maugin notation) 1, 1, m, 2/m, mm, 222, mmm, 4, 4, 4/m, 4mm, 42m, 422, 4/mmm, 3, 3, 3m, 32, 3m, 6, 6, 6/m, 6m2, 6mm, 622, 6/mmm, 23, m3, 43m, 432, m3m

 $\frac{\text{CORRESPONDING Molecular Point Groups}}{(\text{Schönflies notation})} \\ \text{C}_1, \text{C}_i, \text{C}_s, \text{C}_2, \text{C}_{2h}, \text{C}_{2v}, \text{D}_2, \text{D}_{2h}, \text{C}_4, \text{S}_4, \text{C}_{4h}, \text{C}_{4v}, \text{D}_{2d}, \text{D}_4, \text{D}_{4h}, \text{C}_3, \text{S}_6, \text{C}_{3v}, \text{D}_3, \text{D}_{3d}, \text{C}_{3h}, \text{C}_6, \text{S}_3, \text{C}_{6h}, \text{D}_{3h}, \text{C}_{6v}, \text{D}_6, \text{D}_{6h}, \text{T}, \text{T}_h, \text{T}_d, \text{O}, \text{O}_h \\ \end{array}$