Exam II: Chemistry 4610/5560 Inorganic Chemistry Fall, 2001 Department of Chemistry University of North Texas Dr. Mohammad Omary

Student Name:

1) Construct molecular orbital schemes to describe the	he bonding in the following diatomic species:
	(0.1

(24 points)

a) O ₂	c) CN
b) HF	d) $[Cr^{2+}]_2$
b) HF	d) $[Cr^{2+}]_2$
b) HF	d) [Cr ²⁺] ₂
b) HF	d) [Cr ²⁺] ₂
b) HF	d) [Cr ²⁺] ₂
b) HF	d) [Cr ²⁺] ₂

2) For each of the molecules in Question 1, determine the following:

a) bond order O ₂ :	c) the symmetry of the HOMO and LUMO O ₂ : HOMO= LUMO=	
HF :	HF : HOMO=	LUMO=
CN^{-} :	CN ⁻ : HOMO=	LUMO=
$[Cr^{2+}]_2$:	$[Cr^{2+}]_2$: HOMO=	LUMO=

b) spin multiplicity O_2 :

HF:

 CN^{-} :

 $[Cr^{2+}]_2$:

3) For each of the following pairs of atomic orbitals, determine whether a bonding molecular orbital may form as a result of their interaction. If so, sketch that bonding molecular orbital and identify whether it is a ?, ?, or ? orbital. Always assume that the bonding axis is the *z*-axis.

a) p_x, p_x

(8 points)

(12 points)

b) *s*, *p*_z

c) d_{xz} , p_x

d) 1*s*, 5*s*

4) Construct a reasonable molecular orbital scheme to describe the bonding in the planar molecule BH₃. (18 points)

5) Determine the effect of the following processes on the strength of B-H bonds in BH_3 (i.e., determine whether each process leads to strengthening, weakening, or no change in the B-H bonds).

a) Oxidation to form a cation:

(6 points)

b) Reduction to form an anion:

c) Light absorption to form an exciton:

6) Arrange the following and give a brief explanation:

(20 points)

a) Relative acidity among HF, HCl, HBr, and HI:

b) Relative acidity among HClO, HClO₂, HClO₃, and HClO₄:

c) Relative acidity among SnH₄, SbH₃, and TeH₂:

d) Relative basicity with B(C₂H₅)₃ among pyridine, 2-ethylpyridine, 4-ethylpyridine, and 4-fluoropyridine:

e) Relative solubility among PbCl₂, PbBr₂, and PbI₂:

7) Refer to the figure on the next page that shows the HOMO and LUMO for various species and then predict the reaction of water with:

a) calcium metal

b) Cl⁻

c) Mg²⁺

d) F₂

Bonus question: Aqueous solutions of the following oxides lead to the formation of hydroxide species (M-O-H). The resulting B_2O_3 solutions are acidic, Sc_2O_3 solutions are basic, while Al_2O_3 solutions are amphoteric (i.e., have both acidic and basic properties). Explain.

(6 points)

(12 points)